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It is often necessary in high-energy physics experiments to be able to make fast cal- 
culations of the paths of charged particles in a magnetic field, for both Monte Carlo and 
reconstruction programs. If it is possible to represent the field analytically in a Cartesian 
coordinate system by nonnegative powers of x, , x2 , x3 , then the differential equation 
of motion may be solved by comparison of coefficients. 

1. METHOD 

The equation of motion of a particle in a magnetic field has the form 

where 

.f is a constant factor 

denotes d/dt (where t can be the time, the path length, 
the proper time, etc.) 

1, when 01, p, y is an even permutation of 1, 2, 3, 

%R?J = 0, when at least two indices are equal, 
- 1, when DI, /I, y is an odd permutation of 1, 2, 3. 

B must be given analytically with nonnegative powers in the Cartesian coordinates 
x,(a = 1, 2, 3) in the considered region, and must not depend explicitly on the 
parameter t [I]: 

B,(x) = ; c,(l)x; x2’ 3 z,(Z) j Wxky(Z) . 
Z=l 
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We make the following ansatz for the trajectory: 

x,(t) = f u,(h) th-* 
h=l 

and obtain [2] 

L%Ct)P = f &,,(g) t4-l, 
Cl=1 

where 
0 for q < n,m 

b&cd + 111” for q = n,m + 1 

4,wM = 

i 

1 q-12,112-1 

(q - n,m - I) a,@, + 1) 
lzl Mm + 1) - 4 + lwn + 11 

x ah + n, + 1) 4,& - p> for q>n,m+ 1, 

a&z, + 1) being the first nonzero coefficient in x, . Further, 

where 

giving 

m(t)), = : W) f K,(P) tP-l 
1=1 p=1 

= ii : Cd0 4,,(P) tp-’ 
p=1 kl 

= f G,(p) tp--l, 
p=1 

where 

G,(P) = c” Cd) &Z(P). 
kl 

The aa may now be calculated recursively from the given initial conditions 

x, ItzO = a,(l), x,’ It=,, = u,(2), where 01 = 1,2, 3. 
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We obtain by differentiation 

x,(ty = f a,(h)(h - l)(h - 2) P-3 
h=l 

= f h(h + 1) a,(h + 2) P-1 
h=l 

x,(t)’ = 5 a,(h)(h - 1) P-2 
h=l 

= f ha& + 1) P-1. 
h-l 

Therefore, by comparison of coefficients, 

-f h(h f 1) a,(h + 2) th-’ 
h=l 

f hu,(h + 1) th-l 
k=l 

We write 

(2 h%(h + 1) f’-l)i f G,,(h) tk-1) 
h=l h=l 

1) G,(h,) th-l = 2 H,,(h) Ik-l (hi Z l), 

where 

ffdh) = c bdh, + 1) GM, 
hl+k2=h+l 

so that 

F h(h + 1) a,(h + 2) th-’ = J‘ $I ii1 iI %&dh) lh-’ 
h=l 

and finally 
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2. CONSIDERATIONS ON THE CONVERGENCE 

2.1, Homogeneous Field 

B has the form 

and the equations of motion read 

x; = 0, x; = fx3’B, x; = -fx,‘B. 

For simplification, let 
u = t/r, r = l/j-B, 

where r denotes the radius of the trajectory; 

JL(l) = dl), b,(2) = r&(2). 

These changes give the simple set of equations 

f, = 0, f, = 9, ) 2, = -8,, 

where the dot denotes the operation dldu. 
Using the ansatz for the trajectory equation, 

f h(h + 1) b,(h + 2) tk-1 = 0, 
h=l 

2 [h(h + 1) b,(h + 2) - hb,(h + l)] th-1 = 0, 
h=l 

k$l Ihch + 1) h@ + 2) + hb,(h + l)] In-1 = 0, 

we find by comparison of coefficients 

.for h = 1 

.for h = 2 

b(3) = 0, 

b,(3) = P,(2), 

b(3) = -&b,(2); 

b(4) = 0, 
b,(4) = &b,(3) = -&,(2), 

b(4) = -Q&(3) = &b,(2), etc. 
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Hence 

x1(4 = b,(l) + b,(2) 4 

x2(u) = b,(l) + b,(2) u + &b,(2) u2 - &b,(2) 2 + *.* 

= b,(l) + &Q) kEl ,:,““I;I zP~-~ - b,(Z) f (- I)“-1 

k=2 (2k - 2)! u2k-2T 

x3(u) = b,(l) + b,(2) u - &b,(2) 2.42 + &b,(2) u3 + *a. 

= b,(l) + b,(2) 7tzI (;;1)‘;;! ZP-1 + b,(2) k;2 ,;,““1;, ZP-2. 

The sums contained in these terms are the sin(u) or [cos(u) - 1 ] series, and 
therefore converge for any u and rapidly for u < 1 (U = 1 corresponds to a 
deflection by the field of 1 radian). 

As an example, the trajectory of a 1.1 GeV/c particle in a 10 kG field (radius 
therefore - 300 cm) was calculated. Taking a total path length of 400 cm and 
initially a single step, the integration was performed a number of times, each time 
doubling the number of individual steps. In Fig. 1, d is the absolute difference 
between the approximate and exact end points as a function of the upper limit 
(highest power of u) of the series. After each step b,(2) was renormalized: 

n (-hlghert power of u) 

path length for antegrotian 400cm I 

.Ol ,027 .l .5 1. 5 IO 50 error A(i-n) 

FIGURE 1 

For any given accuracy a minimum number of operations is performed in the 
integrations by making just a single step. 

2.2. Inhomogeneous Field 

The deviation of a calculated trajectory from its true path depends not only 
on the accuracy of the tracking method, but also on the precision of the field 
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representation. The field model-a finite power series with nonnegative powers 
in x1 , x2, x,-should be kept as simple as possible, subject only to the required 
precision, since the number of computational operations necessary increases 
rapidly with the number of field coefficients. 

The choice of the highest power n of the trajectory parameter in the series used 
for the trajectory representation must be made empirically, although, in general, 
the highest power required will exceed that of the field representation by at least 
two; if terms of power p in x, were necessary to achieve a given accuracy in the 
field representation, this power will also be necessary in order to describe well the 
field along the trajectory: 

Pi1 

B(f) = i; (,. 2 , )! B’i-l’(0) ti-1, 

where 
d'i-1' B 

BCi-l’(0) = 7 
t=n 

The derivative xcn) is the first which contains the (II - 2)-th power of the field, 
i.e., 

x”(t) = fx’(r) A B(x(t)), 

where A defines a vector product, and after differentiating p times with respect to 
t, and n = p + 2, 

X(n) = fyl (” 7 ‘) x(?l-j) ,., B(j-1). 
j=l 

Should an accuracy thereby be obtained which is greater than that which corre- 
sponds to the field representation, then one should not simply cut the series earlier, 
but simplify the field representation to correspond to the accuracy required in 
just that part of the field volume through which the particles pass. 

2.3. Two-dimensionalfield 

If the field is dependent on only two of the three coordinates x, , and if its 
representation fulfils Maxwell’s equations (which is in general not a necessary 
condition for the application of the above method), then it is possible to prepare 
a simple test program which at the same time illustrates the convergence process. 
If, for example, the field model is independent of x2, the second equation of the 
set has the form 
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Integration of this equation gives the variation in x2’: 

Ax,’ = f j; (x,‘Mx, , x,) - x,‘B,(x, , xd) dt 

If one now substitues for x,(t), x3(t), and x,‘(t) the ansatz from Section I, the 
two sides of the equation should converge. 

As an example, using the notation in Section I, 

C,(l) = -20, iI = I, M) = 0, k(l) = 1, 
C,(l) = 10000, is(l) = 0, Ul> = 0, Ml) = 0, 
C,(2) = - 10, i3(2) = 2, .M2) = 0, k(2) = 0, 
C,(3) = 10, i3(3) = 0, j,(3) = 0, k(3) = 2, 

B, = -20x,x, ) 
B, = 10000 - 10x,2 + 10x,2, 

Ax,’ = - lOOOOf{x,(t) - x,“(t)/3000 + xl(t) x,2(t)/lOOO - x,(O) t x13(0)/3000 
- x,(O) x,2(t)/l~00 + (x,(O) -Q2(t) - x,(O) x32(o))/1000). 

TABLE I 

Convergence of the “deflexion” 

1 -o.oooo -0.1901 
2 -0.1036 -0.1901 
3 -0.1462 -0.1897 
4 -0.1898 -0.1896 
5 -0.1892 -0.1891 
6 -0.1893 -0.1889 
I -0.1896 -0.1889 
8 -0.1891 -0.1889 
9 -0.1890 -0.1889 

10 -0.1889 -0.1889 
co -0.1889 -0.1889 

ll+1 
a) oi = 1 (h - 1) az(h)P2 - a,(2). 

h=l 1 

*+I ?t+* 

b) B = C c MP’, 1 4fW1, 41). 41) . 
h=l h=l 
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For the initial conditions, 

a,(l) = x,(O) = - 10.0, a,(l) = x,(O) = 0, a,(l) = x3(O) = 0, 
a,(2) = x,‘(O) = 0.8, a,(2) = x2’(O) = 0, 42) = x,‘(O) = 0.6, 

and with 
t = 50.0, f’ = 2.998 x 10-7, 

we find the values of Table I. 
The field representation goes up to the power of two, whereas the fourth-order 

representation of the trajectory gives the “deflexion” to a satisfactory accuracy. 

3. APPLICATION 

3.1. A Spec$c A4agnet 

The Split Field Magnet (SFM) [3] at CERN was chosen as an example of a 
magnet having a very inhomogeneous field, with a maximum value of 10 kG and 
a volume of 350 x 1240 x 110 cm3, The field has been analysed, for the sake of 
simplicity of use, by dividing one quadrant into 1152 equal boxes and determining 
the coefficients of polynomial series satisfying Maxwell’s equations for the field 
components at a point [4]. No test on the significance of the coefficients was made. 
The series were of power one, two, or three, the program seeking the minimum 
order fit in each box such that the maximum residual at a measured point did not 
exceed 30 G. This represents, for a 1.1 GeV/c particle at the center of the detector 
system, an error in the tracking due to an error in the determination of the field 
which is of the same order as the error due to the resolution of wire spark chambers 
placed in the field. 

Two FORTRAN tracking programs have been written and tested, and compared 
with a third standard program using the Runge-Kutta method [5]. The first of 
the two programs uses a subroutine EQUMOT [6], which contains the equations 
of Section I written implicitly, together with a subroutine to prepare the field 
coefficients in the required form. The processing time of this program rises rapidly 
with the order of the tracking, but it allows one to obtain any desired accuracy. 

In the second program, use was made of a subroutine TRACE in which the 
equations are written out explicitly for a field of maximum power three. To 
facilitate the writing of this program, which is rather intricate owing to the large 
number of terms involved and the need to factorize them as well as possible, the 
field representation was transformed into a system with its origin at the starting 
point of the integration path using a separate subroutine FIELD, written for the 
purpose. TRACE, of course, gives identical results to those of EQUMOT, whilst 
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being typically a factor 20 times faster. Figure 2 is a graph of central processor 
time (CDC 6600) versus the accuracy obtained by TRACE for a 1.1 GeV/c particle 
followed from the origin to the center of the group of detectors. The linked points 
give curves for different choices of path length; the different symbols indicate the 
tracking order used in each box traversed by the particle, this being a function of 
the highest power of the field representation in the box. For comparison, the 
Runge-Kutta curve is included. 

For low accuracy the latter method is faster, this being due to the limitation 
imposed on the path length in TRACE by the fact that the box size was kept small 
enough not to require a fit to a power greater than three, beyond which 
programming becomes impractical, whilst it is evident from Fig. 2 that even in such 
an inhomogeneous field a larger path length should be chosen. This demonstrates 
a competitive situation which arises when a compromise has been reached 
between storage space and a simple field model. 

3.2. A Specific Problem Requiring Tracking to a Set of End Points for Fixed Initial 
Conditions 

The problem arises in the central region of the SFM of performing very fast 
tracking towards the center of the magnet. A TRACE-like program has been 
written which performs the tracking from the edge of this central region to its 
center in a single step, which takes 1.74 msec (CDC 6600). By reusing the initial 
conditions and adjusting the path length one can approach the desired end point 
iteratively, these subsequent calls each taking only 0.126 msec more. 
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4. CONCLUSIONS 

The method described is well adapted to an homogeneous field. 
Ln the case of an inhomogeneous field one must first determine how much fast 

storage is available; for a rather fine grid of field measurements the Runge-Kutta 
method is faster, whereas if it is necessary to comply with more limiting storage 
considerations by using an analytical model of the field, the time required to cal- 
culate field values becomes a dominant part of the Runge-Kutta time. In this 
case the method described in this paper is to be preferred. 

If, as above, a compromise has been reached between storage space and a 
simple model, the two methods are competitive. 

The above method is especially well adapted to problems requiring the calcula- 
tion of a large number of end points from a single set of initial conditions. In 
this case the coefficients a,(h) from the trajectory equations need to be calculated 
only once. 

ln addition, the method allows the calculation of the intersection points of a 
trajectory with a given surface G(x, , x2 , x3) = 0 (particle detectors, for example). 
Having constant initial conditions, one can use an iterative procedure to approach 
the surface, thus obviating the necessity to solve high-order equations to define 
the path length to the intersection point. 

ACKNOWLEDGMENTS 

We would like to thank Dr. K. Winter for his continuing support of our work, and Drs. H. 
Wind and T. Pomentale for helpful discussions. Miss F. Ranjard and Dr. H. Grote have afforded 
us much practical assistance. 

We would particularly like to thank Mr. K. S. Kiilbig for his valuable advice concerning the 
preparation of this paper. 

REFERENCES 

1. H. WIND, J. Computational Phys. 2 (1968), 274. 
2. 1. S. GRADSHTEYN AND I. M. RYZHIK, “Table of Integrals, Series, and Products,” Academic 

Press, New York, 1965. 
3. A. MINTEN, “The Split Field Magnet Facility,” CERN-SFMD-Note-4, 28 April 1971. 
4. M. M~~c~~~,“Analysis of the SFM Field,“CERN-OM Development NoteAP-10,8November 

1971. 
5. M. ABRAMOWITZ, “Handbook of Mathematical Functions,” Dover, New York, 1965. 
6. M. REGLER, EQUMOT - “Equations of Motion of a Particle in a Static Magnetic Field,” 

CERN Computer Program Library W306, 1968. 


